Multiscale Approximation and Reproducing Kernel Hilbert Space Methods

نویسندگان

  • Michael Griebel
  • Christian Rieger
  • Barbara Zwicknagl
چکیده

We consider reproducing kernels K : ⌦ ⇥ ⌦ ! R in multiscale series expansion form, i.e., kernels of the form K (x, y) = P ` 2N`P j2I`` ,j (x) `,j (y) with weightsànd structurally simple basis functions`,i. Here, we deal with basis functions such as polynomials or frame systems, where, for`2 N, the index set I ` is finite or countable. We derive relations between approximation properties of spaces based on basis functions { ` (y) is provided where the truncation index L is chosen sufficiently large depending on the point set X N. Furthermore, Bernstein-type inverse estimates and derivative-free sampling inequalities for kernel based spaces are obtained from estimates for spaces based on the basis functions { `,j : 1  `  L, j 2 I ` }. 1. Introduction. In many applications, one seeks to reconstruct or to approximate a function from given (measured) strong or weak data. Kernel-based methods have proven a reliable and useful tool in a large variety of such problems, including meshless methods for the solution of partial differential equations, surface reconstruction and machine learning algorithms (see [4, 5, 6, 7, 24, 25, 28]). In kernel-based meshless methods one typically considers trial spaces that are based on a finite discrete set X N = {x 1 ,. .. , x N } ⇢ ⌦ of data points. They are spanned by translates of a given kernel function

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations

In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...

متن کامل

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

متن کامل

Solving integral equations of the third kind in the reproducing kernel space

A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Solving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method

The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...

متن کامل

Frame, Reproducing Kernel, Regularization and Learning

This works deals with a method for building Reproducing Kernel Hilbert Space (RKHS) from a Hilbert Space with frame elements having special properties. Conditions on existence and method of construction are given. Then, these RKHS are used within the framework of regularization theory for function approximation. Implications on semiparametric estimation are discussed and a multiscale scheme of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2015